Geogene und anthropogene Quellen der Schwermetallbelastung von Fließgewässern des Erzgebirges

Prof. Dr. B. Voland, Freiberg und Prof. Dr. A. Knöchel, Hamburg

1 Einführung und Problem

Speziell aus mikrobiologischer Sicht zwangen die Entwicklungen in der zweiten Hälfte des vergangenen Jahrhunderts dazu, in den Großstädten Europas Voraussetzungen zu schaffen, durch zentrale Wasseraufbereitung und Abwasserbehandlung hygienische Bedingungen für reines Trinkwasser und eine zentrale Versorgung mit diesem zu erschließen.

Mit der Festlegung von Grenzwerten für die Wasserinhaltstoffe des Trinkwassers sind dabei Schutzziele klar definiert.

Während anthropogene Einträge (bei allen Schwierigkeiten, die dabei bestehen) relativ klar überschaubar, eingrenzbar und sanierbar sind, dürften geogen bedingte Einträge zum Problemfeld der Zukunft avancieren.

In diesem Rahmen sieht es die Umweltgeochemie als eine ihrer wichtigsten Aufgaben an, geogen und anthropogen gesteuerte Prozesse in ihren Wechselwirkungen aufzuklären, um auf dieser Basis geochemisch begründete Umweltverfahrenstechnik zu initiieren.
Speziell in Lagerstättengebieten spielen dabei Umweltbelastungen durch Schwermetalle eine herausragende Rolle. Das Erzgebirge, als eine der bedeutendsten Lagerstättenprovinzen der Welt, dürfte dabei in Zukunft prototypisch im Mittelpunkt der Forschung stehen.

Der Bedarf der Sanierung ergibt sich aus folgenden Gründen:
- Die Besonderheiten der geologischen und geochemischen Entwicklung des Erzgebirges haben zu speziellen geochemischen Provinzen geführt, aus denen natürliche Belastungen resultieren.
- Der intensive Bergbau mit all seinen Folgen ist Ursache für außergewöhnliche Schwermetallbelastungen.
- Grubenwässer abgeworferener Gruben belasten mit ihren Schwermetallgehalten die Vorflut.
- Natürlich ablauende Auflagerungsprozesse in Bergbauhalden führen zu hochbelasteten Sickergewässern.
- Betriebe der Erzaufbereitung haben umfangreiche Altlasten in Form von Rückständen, die hinterlassen, von denen Schwermetallkonzentrationen ausgehen.
- Hohe Bevölkerungsdichte und nicht voll funktionsfähige bzw. nicht vorhandene Kläranlagen führen zu erheblichen Belastungen der Fließgewässer, insbesondere mit organischen Schadstoffen, die zudem Schwermetalle in hohem Umfang binden können.

2 Kurze Charakteristik des Einzugsgebietes von Zwickauer und Freiberger Mulde

Das Gewässersystem der Mulde (siehe Bild 1), bestehend aus der Zwickauer Mulde und der Freiberger Mulde mit seinen größten Nebenflüssen Flöha und Zschopau, entwässert insgesamt ein Einzugsgebiet von 7160 km². Während die Zwickauer Mulde wesentliche Teile des Westerzgebirges mit einer Einzugsgebietsfläche von 2353 km² und

Bild 1: Das Einzugsgebiet der Mulde
einer Besiedlungsdichte von ca. 300 Einwohnern pro Quadratkilometer mit einer durchschnittlichen Abflußmenge von 30,2 m³/s entwässert, werden wesentliche Teile des Osterzgebirges durch die Freiberger Mulde mit einer durchschnittlichen Abflußmenge von 22,6 m³/s entwässert. Die Freiberger Mulde erfaßt ein Einzugsgebiet von 2985 km² mit einer Besiedlungsdichte von 150 Einwohnern pro Quadratkilometer.

Die Freiberger Mulde entspringt auf dem Gebiet der CSFR, ca. 4 km von der Staatsgrenze entfernt, in einer Höhe von 826 m ü. NN. Nordwärts fließend werden die Ortschaften Holzhau, Mulda, Weißeborn, vorbei an Freiberg, Siebenlehn, Nossen, Roßwein, Döbeln und Leisnig bestrichen, bis sich der Fluß bei Rennertshütte mit der aus dem Westerzgebirge kommenden Zwickauer Mulde vereint, um dann als vereinte Mulde seinen Lauf von Norden fortzusetzen und bei Dessau in die Elbe einzumünden. Auf dem letzten Abschnitt wurde die Mulde insbesondere durch die Chemiestandorte Wolfen und Pitterfeld beeinflußt.

Bei Remse (südlich von Glauchau) tritt der Fluß von erzgebirgischen Becken in das sächsische Hügelland, durchbricht bis unterhalb Rochlitz das NW-sächsische Porphyrgebiet und fließt zwischen Wechselburg und Colditz durch Täler, wo Schluchten und weite Auenlandschaften abwechseln.

Wie aus der folgenden Übersicht hervorgeht, unterscheiden sich die Einzugsgebiete von Zwickauer und Freiberger Mulde hinsichtlich der

| Tabelle 1: Einzugsgebietcharacteristik von Zwickauer und Freiberger Mulde |
|-----------------|-----------------|
| Größe des Einzugsgebietes | 2353 km² | 2985 km² |
| Länge Flußlauf | 140 km | 115 km |
| Abflußmenge | 30,2 m³/s | 22,6 m³/s |
| Besiedlungsdichte | ca. 300 Ew./km² | ca. 150 Ew./km² |
| Bebauung | 25 Städte davon 2 Städte > 80.000 EW | 15 Städte davon 1 Stadt > 50.000 EW |
| Talsperren | 8 | 4 |
| Flächennutzung | ca. 30% Wald | ca. 15% Wald |
| | ca. 60% LNF | ca. 75% LNF |
| Verkehr | 2 Autobahnen | 1 Autobahn |
| Industrie | Maschinenbau | Bunsmetallurgie |
| | Textil | Papier |
| | Chemie | Holz |
| | Papier | Textil |
| | Holz | Maschinenbau |
| | | Leder |
| Bergbau | U, As, Bi, Co, Ni, Ag, Sn, W | Pb, Ag, Zn, Cd, As, Sn |
| Bergbauhalden | Altebergbau Ag, Co | Altebergbau Ag, Pb, Zn |
| | Wismut, U, As | |
| Hüttenwerke | Ni-Hütte: Aue | Pb-Hütten: Muldenhütten |
| | Ni-Hütte: Sankt-Egidien | Halsbrücke |
| | | Zn-Hütte: Freiberg |
| | | Sn-Hütte: Freiberg |
| Aufbereitungsrückstände | Uranaufbereitung: Crossen, Absetzbecken Dänkritz und Heimisdorf | Schlackenhalden der Hüttenindustrie |
Flächennutzung, hinsichtlich der ansässigen Industrie und insbesondere hinsichtlich des Bergbaus und des Hüttenwesens.

Daneben hatte sich am Oberlauf holzverarbeitende Papier- und Zellstoffindustrie angesiedelt. Die Belastungen des Flusses mit organischem Material ist auf sie und den Einfluss der Städte zurückzuführen.

Die Spezifik der lokalen Besonderheiten einerseits und andererseits die Tatsache nahezu unbeschränkter Ressourcennutzung in der Vergangenheit führten dazu, daß die vereinigte Mulde der größte Schwermetalleinräger in die Elbe ist.

3 Kurze geologische Charakteristik der Einzugsgebiete

Die Einzugsgebiete der Zwickauer und der Freiberger Mulde stellen wesentliche Teile des metallogenetisch hoch spezialisierten Erzgebirges dar.

Der Kirchberger Granit und seine Hüllgesteine, die Phyllite und Tonschiefer im Kontakthof beeinflussen ebenfalls das Gewässer, ehe es in das Gebiet der Glimmerschiefer, Augengneise und Gneisglimmerschiefer des Kristallins um Schwarzenberg eintritt.

Das Granulitgebirge mit seinem Schiefermantel wird auf der Linie nördlich Glauchau, Penig, Rochlitz und südlich Colditz von der Zwickauer Mulde durchflossen.

Nach dem Granulitgebirge entwässert die Mulde einen Teil NW-Sachsen mit vorwiegend rottlegenden Porphyreguss, Tertiär- und Quartäralagerstätten. Ostlich und nordöstlich von Colditz (Commichau) sind untermiozän Braunkohlenflöze abgebaut worden, Mittelpleistozäne Schotter der Mulde sind von Lunzenau über Colditz nach Norden hin in einem 1,5 km breiten Streifen anzutreffen.

Der hohe Metamorphosegrad der Granulite hat gegenüber den Gneisen eine Verarmung an Spurenelementen wie As, Hg, Sb, Ag, B, Be, Cr, Cu, Mn, Nb, Ni und Sn zur Folge.

Die Einzugsgebiete der Zwickauer und der Freiberger Mulde lassen sich hinsichtlich der Verbreitungshäufigkeit der wichtigsten Gesteine deutlich unterscheiden, wie aus der folgenden Tabelle 2 ersichtlich wird:

<table>
<thead>
<tr>
<th>Gestein im Einzugsgebiet</th>
<th>Zwickauer Mulde</th>
<th>Freiberger Mulde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gneise und Glimmerschiefer</td>
<td>2%</td>
<td>55%</td>
</tr>
<tr>
<td>Phyllite</td>
<td>40%</td>
<td>20%</td>
</tr>
<tr>
<td>Granulite</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td>Granite</td>
<td>20%</td>
<td>5%</td>
</tr>
<tr>
<td>Rottliegendes</td>
<td>15%</td>
<td>5%</td>
</tr>
<tr>
<td>Porphyre</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>Basalt/Ultrabasalt</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>Tertiäre Sedimente (Löß)</td>
<td>5%</td>
<td>2%</td>
</tr>
<tr>
<td>Quartäre Schotterterrassen</td>
<td>2%</td>
<td>2%</td>
</tr>
</tbody>
</table>

4 Charakter der geochemischen Provinz und seine Widerspiegelung in der Schwermetallbelastung der Fließgewässer

Auf Grund seiner Entwicklung stellt das Erzgebirge eine geochemische Provinz dar, in der generell mit erhöhten Konzentrationen an Arsen, Blei, Uran, Bor, Lithium, Cäsium, Rubidium, Silber, Gallium, Kobalt und Zinn

in den geologischen Materialien, insbesondere aber in den Böden, zu rechnen ist (METZNER, VOLAND und BOMBACH, 1991).

Die Schwermetallbelastungen der Böden und Wässer in den Lagerstättengebieten des Erzgebirges bestehen darin, daß unterschiedlich zusammengesetzte geochemische Subprovinzen als natürliche geogene Quellen der Kontamination zu bewerten sind, die anthropogen durch den Bergbau verstärkt generiert werden.

Während das Westerzgebirge (Einzugsgebiet der Zwickauer Mulde) als geochemische Subprovinz durch Mineralisationen der Elemente Uran, Arsen, Kobalt, Nickel, Silber, Selen und Wismut charakterisiert ist und anthropogen durch den entsprechenden Uranbergbau der SDAG-Wismut mit dem ähnlichen Elementspektrum hochbelastet wurde, stellt das Osterzgebirge (Einzugsgebiet der Freiberger Mulde) eine geochemische Subprovinz dar, die durch Mineralisationen von Blei, Zink, Silber, Cadmium, Arsen und Zinn und dem entsprechenden Altb ergbau einschließlich des dazugehörigen Hüttenwesens (Freiberg) charakterisiert ist. Mischformen dieser beiden geochemischen Subprovinzen treten im mittleren Erzgebirge zusammen mit Zinn im Raum Annaberg, Marienberg, Ehrenfriedersdorf und Geyer auf.

Der Charakter dieser Subprovinzen widerspiegelt sich sehr deutlich in der Zusammensetzung der Wässer und der Sedimente der Flüsse, die diese Regionen entwässern, was mit einigen Beispielen belegt werden soll.

So zeigen die Sedimente der Zwickauer Mulde wesentlich höhere Kobalt- und Nickelkonzentrationen als die Sedimente der Freiberger Mulde (siehe Bild 2–5). Ebenso verhalten sich diese beiden Elemente im Wasser (siehe Tabelle 3).

Der Nickelgrenzwert für Trinkwasser wird in der Zwickauer Mulde teilweise erheblich überschritten. Die stark erhöhten Nickelkonzentrationen im Sediment der Zwickauer Mulde ab Flußkilometer 43 zeigen darüberhinaus den Einfluß des Bergbaus in diesem Gebiet an.

Die insgesamt niedrigeren Nickelgehalte im Sediment der Freiberger Mulde entsprechen der Nickelarmut dieser geochemischen Subprovinz. Der hohe Nickelgehalt im Sediment bei Flußkilometer 86 widerspiegelt ebenfalls die Wirkung geologischer Verhältnisse. Hier überfließt die Mulde einen Bronzitserpentinit. Derartige Gesteine mit relativ hohen natürlichen Nickelgehalten können bei Verwitterungsprozessen
Bild 2: Nickel im Sediment der Freiberger Mulde

Bild 4: Kobalt im Sediment der Freiberger Mulde

Bild 3: Nickel im Sediment der Zwickauer Mulde

Bild 5: Kobalt im Sediment der Zwickauer Mulde
Tabelle 3: Schwermetallgehalte im Wasser der Freiberger und Zwickauer Mulde in μg/L

<table>
<thead>
<tr>
<th>Element</th>
<th>Freiberger Mulde</th>
<th>Zwickauer Mulde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>6.0</td>
<td>2</td>
</tr>
<tr>
<td>Cr</td>
<td>13.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Cu</td>
<td>18.0</td>
<td>50</td>
</tr>
<tr>
<td>Co</td>
<td>7.0</td>
<td>1</td>
</tr>
<tr>
<td>Ni</td>
<td>19.0</td>
<td>5</td>
</tr>
<tr>
<td>Pb</td>
<td>18.0</td>
<td>5</td>
</tr>
<tr>
<td>Zn</td>
<td>330.0</td>
<td>50</td>
</tr>
</tbody>
</table>

Werte für 1990: diese Arbeit

bis zur Bildung silikatischer Nickellagerstätten verändert werden. Sie verursachen im vorliegenden Fall die hohen Nickelkonzentrationen im Flußsediment.

5 Durch Bergbau generierte Schwermetall-Einträge

Die Größenordnung der Probleme wird dadurch deutlich, daß z. B. durch die Wismut AG 280 Schächte geschlossen werden und zur Flutung anstehen. 55 Schächte und 85 Wetterüberhauen sollen verfüllt werden. Durch die Flutung der Bergbaubetriebe der Wismut AG entsteht in den nächsten 8–10 Jahren ein neues Belastungsproblem.

So stehen z. B. in der Lagerstätte Alberoda 40·10⁶ m³ Grubenraum zur Flutung an. Die Abschlagwässer dieser Grube führten pro Jahr 12 t Uran und 3,5 t Arsen in die Zwickauer Mulde. Diese Last wird im Flutungszeitraum der nächsten 8 Jahre der Mulde nicht mehr zugeführt. Nach Flutung ist mit einer Abgabe von 500–700 m³ Wasser/Stunde und ähnlich hohen Schwermetallfrachten wie bisher an die Vorflut zu rechnen.

Die Uranbelastung im Sediment der Zwickauer Mulde mit Konzentrationen zwischen 200 bis 300 mg/kg widerspiegeln im Bereich der Flußkilometer 44–55 den Einfluß der Uran-Lagerstätten im Gebiet Aue, Schlema und Hartenstein (siehe Bild 6). Ein extremes Maximum der

![Graphik](grafik.png)

Bild 6: Uran im Sediment der Zwickauer Mulde

Von besonderer Bedeutung für die Schwermetalbelastung sind die Bergbauhalden.

Die Laugungsprozesse der Schwermetalle aus diesen Quellen sind im wesentlichen mikrobiell generiert, wobei die Oxidation der Sulfide (die Sulfidgehalte in den Haldenmaterialien liegen im Durchschnitt bei 2–2,5 Masse-%) zur Bildung der Schwefelsäure führt.

Insgesamt handelt es sich um ca. 3500 Halden; ferner sind 13 stilllegte industrielle Absetzbecken und 5 bis in jüngste Zeit betriebene Absetzanlagen zu berücksichtigen.

Die durch den Altbergbau und den Bergbau nach dem 2. Weltkrieg im Erzgebirge und den angrenzenden Räumen in Anspruch genommenen Flächen werden auf ca. 1000 km² belastete Areale geschätzt.

Die Sickerwässer der Halden machen nach Schätzungen zwar nur 8 % der vom Bergbau an die Vorflut abgestoßenen Wässer aus. Insgesamt stellen sie aber mit pH-Werten zum Teil um 2 den größten Anteil in der Schwermetallobilanz.

4 Durch Hüttenindustrie generierte Kontaminationen

Der anthropogen bzw. technogen bedingte Einfluß auf das Fließgewässersystem soll hier am Beispiel des Elementes Arsen gezeigt werden.

Im Hüttengebiet Freiberg wurde Arsen aus der ehemaligen Arsenikhütte, insbesondere aber aus der Zinnhütte emittiert, da die verarbeiteten erzgebirgischen Zinnerze ausgesprochen arsenreich sind. Die Zinnhütte stellte Ende 1990 ihre Tätigkeit ein.

Röntgenphasenanalytisch konnte die in die Atmosphäre emittierte Arsenphase als Arsenolith (As₂O₃) bestimmt werden. Die Hauptmenge dieser Emissionen kommt in der Umgebung der Hütten zur Deposition.

Die Depositionsraten für Arsen (Messungen der NE-Metall GmbH, Freiberg, Dr. Lohmann) weisen die Anomalie in der Umgebung der Hütten aus (Bild 8). Diese Kontamination widerspiegelt sich in den Böden (Bild 9), wobei As₂O₃ unter Oberflächenbedingungen zu Arsenat umgewan-
delt und relativ stabil fixiert wird. Insgesamt weisen in diesem Gebiet 48,2 km² Bodenfläche Arsentagehalte über 100 mg/kg aus.

Für die Schwermetalle haben die reduzierenden Bedingungen im Sediment zu enormen Akkumulationen geführt, wie aus der Tabelle 5 sichtbar wird.

Auch hier besteht die große Gefahr, daß bei Änderung des geochemischen Milieus diese Elemente in das Wasser mobilisiert werden. Schon jetzt finden wir sie auch in erhöhten Konzentrationen in den

Tabelle 5: Minimale und maximale Schwermetallkonzentrationen im Sediment der Freiberger Mulde in mg/kg

<table>
<thead>
<tr>
<th>Element</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nickel</td>
<td>30</td>
<td>350</td>
</tr>
<tr>
<td>Chrom</td>
<td>20</td>
<td>1500</td>
</tr>
<tr>
<td>Cadmium</td>
<td>50</td>
<td>1500</td>
</tr>
<tr>
<td>Arsen</td>
<td>80</td>
<td>1600</td>
</tr>
<tr>
<td>Kupfer</td>
<td>100</td>
<td>6000</td>
</tr>
<tr>
<td>Blei</td>
<td>100</td>
<td>18000</td>
</tr>
<tr>
<td>Zink</td>
<td>900</td>
<td>34000</td>
</tr>
</tbody>
</table>
Böden der Auen wieder (VOLAND, METZNER u. KLUGE, 1989), die bekanntlich für die Gemüseproduktion und die Trinkwassergewinnung durch Uferfiltration genutzt werden. Damit ist ihr Eintritt in die Nahrungsnetze gegeben.

5 Ausblick

Der Schutz des Wassers setzt Kenntnisse über die Prozesse der Verunreinigungen, die Quellen und das Verhalten der Schwermetalle im gesamten geochemischen Kreislauf voraus. Insbesondere die geogenen Quellen bedürfen hinsichtlich ihrer Einflüsse eine größere Beachtung.

Der Bundesminister für Forschung und Technologie fördert seit 1.6.1991 (Förderkennzeichen: O2WT91139) ein entsprechendes Verbundprojekt mit dem Thema: Bestandsaufnahme der Schwermetallsituation im Gewässersystem der Freiberger-, Zwickauer- und der vereinigten Mulde im Hinblick auf die zukünftige Gewässergüte. Das „Muldeprojekt“ wird gemeinsam von der Universität Hamburg und der Bergakademie Freiberg bearbeitet. Die Hamburger Gruppe vom Institut für Angewandte und Anorganische Chemie steht unter Leitung von Prof. Dr. A. Knöchel, die Freiberger Gruppe vom Institut für Mineralogie, Geo-

chemie und Lagerstättenlehre steht unter der Leitung von Prof. Dr. B. Voland.

Zusammenfassung

Literatur

